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\ expansion for the periodic orbit quantization by harmonic inversion
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Semiclassical spectra beyond the Gutzwiller and Berry-Tabor approximation for chaotic and regular sys-
tems, respectively, are obtained by harmonic inversion of the\ expansion of the periodic orbit signal. The
method is illustrated for the circle billiard, where the semiclassical error is reduced by one to several orders of
magnitude with respect to the lowest order approximation used previously.@S1063-651X~98!13410-4#
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Semiclassical spectra can be obtained for both regular
chaotic systems in terms of the periodic orbits of the syst
For chaotic dynamics the semiclassical trace formula w
derived by Gutzwiller@1,2#, and for integrable systems th
Berry-Tabor formula@3# is well known to be precisely
equivalent to the Einstein-Brillouin-Keller~EBK! torus
quantization@4#. However, the semiclassical trace formul
are exact only in exceptional cases, e.g., the geodesic mo
on the constant negative curvature surface. In general
are just the leading order terms of an infinite series in pow
of the Planck constant and the accuracy of semiclass
quantization is still an object of intense investigation@5–7#.
Methods for the calculation of the higher order periodic or
contributions were developed in@8–10#. However, the\ ex-
pansion of the periodic orbit sum does not solve the gen
problem of the construction of the analytic continuation
the trace formula. The semiclassical trace formula usu
does not converge in the physically interesting region e
when only the leading order terms in\ are considered, and
special techniques are necessary to overcome the con
gence problems@11–13#. Up to now the\ expansion for
periodic orbit quantization is restricted to systems w
known symbolic dynamics, like the three disk scatteri
problem, where cycle expansion techniques can be app
@9,10#.

Recently theharmonic inversiontechnique@14,15# was
proposed as a universal method for periodic orbit quant
tion @16,17#, which allows the analytic continuation of th
non-convergent periodic orbit sum to the region where
semiclassical eigenvalues and resonances are located
power of this method was demonstrated by its wide appl
bility to open and bound systems with both regular and c
otic classical dynamics. However, the method was restric
to the conventional lowest order\ approximation of the pe-
riodic orbit sum, i.e., it cannot be applied straightforward
to the\ expansion of the periodic orbit sum. In this paper w
overcome these problems and extend the method of peri
orbit quantization by harmonic inversion to the analysis
the \ expansion of the periodic orbit sum. When applied
the circle billiard, as a first example, the accuracy of se
classical eigenvalues is improved by at least one to sev
orders of magnitude. The method can be applied to a la
variety of systems, i.e., it is not restricted to problems wh
can be solved with cycle expansion techniques.
PRE 581063-651X/98/58~4!/4436~4!/$15.00
nd
.
s

on
ey
rs
al

t

al
f
ly
n

er-

ed

-

e
he
-
-
d

ic
f

i-
ral
e

h

As previously @16# we consider systems with a scalin
property, i.e., where the shape of periodic orbits~PO! does
not depend on the scaling parameterw and the classical ac
tion SPO scales as

SPO5wsPO . ~1!

The scaling parameter plays the role of an inverse effec
Planck constant, i.e.,w[\eff

21 , and the\ expansion of the
periodic orbit sum can therefore be written as a power se
in w21. The semiclassical spectrum is given by

%~w!52
1

p
Im g~w!, ~2!

with

g~w!5 (
n50

`

gn~w!5 (
n50

`
1

wn (
PO
A PO

~n! eisPOw ~3!

the fluctuating part of the semiclassical response funct
TheA PO

(n) are the complex amplitudes of thenth order peri-
odic orbit contributions including phase information from th
Maslov indices. Usually the zeroth order contributionsA PO

(0)

are considered only. The Fourier transform of the princi
periodic orbit sum

C0~s!5
1

2pE2`

1`

g0~w!e2 iswdw5(
PO
A PO

~0! d~s2sPO!

~4!

is adjusted by application of theharmonic inversiontech-
nique @16,17# to the functional form of the exact quantum
expression

C~s!5
1

2pE2`

1`

(
k

dk

w2wk1 i e
e2 iwsdw52 i(

k
dke

2 iwks,

~5!

with $wk ,dk% the eigenvalues and multiplicities. The fre
quencieswk,0 obtained by harmonic inversion of Eq.~4! are
the zeroth order\ approximation to the semiclassical eige
values. We will now demonstrate how the higher order c
rection terms to the semiclassical eigenvalues can be
tracted from the periodic orbit sum~3!. We first remark that
4436 © 1998 The American Physical Society
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the asymptotic expansion~3! of the semiclassical respons
function suffers, forn>1, from the singularities atw50, and
it is therefore not appropriate to harmonically invert the Fo
rier transform of Eq.~3!, although the Fourier transform for
mally exists. This means that the method of periodic or
quantization by harmonic inversion cannot straightforwar
be extended to the\ expansion of the periodic orbit sum
Instead we will calculate the correction terms to the se
classical eigenvalues separately, order by order, as desc
in the following.

Let us assume that the (n21)st order approximations
wk,n21 to the semiclassical eigenvalues are already obta
and thewk,n are to be calculated. The difference between
two subsequent approximations to the quantum mechan
response function reads

gn~w!5(
k

S dk

w2wk,n1 i e
2

dk

w2wk,n211 i e D
'(

k

dkDwk,n

~w2w̄k,n1 i e!2
, ~6!

with w̄k,n5(wk,n1wk,n21)/2 andDwk,n5wk,n2wk,n21 . In-
tegration of Eq.~6! and multiplication bywn yields

Gn~w!5wnE gn~w!dw5(
k

2dkw
nDwk,n

w2w̄k,n1 i e
, ~7!

which has the functional form of a quantum mechanical
sponse function but with residues proportional to thenth
order correctionsDwk,n to the semiclassical eigenvalues. T
semiclassical approximation to Eq.~7! is obtained from the
term gn(w) in the periodic orbit sum~3! by integration and
multiplication bywn, i.e.,

Gn~w!5wnE gn~w!dw52 i(
PO

1

sPO
A PO

~n! eiwsPO1OS 1

wD .

~8!

We can now Fourier transform both Eqs.~7! and ~8!, and
obtain (n>1)

Cn~s![
1

2pE2`

1`

Gn~w!e2 iwsdw5 i(
k

dk~wk!
nDwk,ne2 iwks

~9!

5
hi

2 i(
PO

1
sPO
A PO

~n! d~s2sPO!. ~10!

Equations~9! and~10! are the main result of this paper. The
imply that the\ expansion of the semiclassical eigenvalu
can be obtained, order by order, by harmonic inversion~hi!
of the periodic orbit signal in Eq.~10! to the functional form
of Eq. ~9!. The frequencies of the periodic orbit signal~10!
are the semiclassical eigenvalueswk . Note that the accuracy
of the semiclassical eigenvalues does not necessarily
crease with increasing ordern. We indicate this in Eq.~9! by
omitting the indexn at the eigenvalueswk . The corrections
Dwk,n to the eigenvalues are obtained from theamplitudes,
dk(wk)

nDwk,n , of the periodic orbit signal.
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The method requires as input the periodic orbits of
classical system up to a maximum period~scaled action!
smax, determined by the average density of states@16,17#.
The amplitudesA PO

(0) are obtained from Gutzwiller’s trace
formula @1,2# and the Berry-Tabor formula@3# for chaotic
and regular systems, respectively. For the next order cor
tion A PO

(1) explicit formulas were derived by Gaspard an
Alonso for chaotic systems with smooth potentials@8# and in
Refs. @9,10# for billiards. With appropriate modifications
@18# the formulas can be used for regular systems as we

We now demonstrate the\ expansion of the periodic orbi
sum for the example of the circle billiard. We choose th
system mainly for the sake of simplicity, since all the pe
odic orbits and the relevant physical quantities can be
tained analytically. It will be evident that the procedu
works equally well with more complex systems where pe
odic orbits have to be searched numerically. Furthermore
system has served recently as a showpiece example for
ing the fundamental problem of reducing the number of
bits required for periodic orbit quantization@19#. The exact
quantum mechanical eigenvaluesE5\2k2/2M of the circle
billiard are given as zeros of Bessel functionsJumu(kR)50,
wherem is the angular momentum quantum number andR
the radius of the circle. In the following we chooseR51.
The lowest order semiclassical eigenvalues can be obta
by an EBK torus quantization resulting in the quantizati
condition @5#

kRA12~m/kR!22umuarccos
umu
kR

5pS n1
3

4D , ~11!

with m50,61,62, . . . being the angular momentum qua
tum number andn50,1,2, . . . theradial quantum number
States with angular momentum quantum numbermÞ0 are
twofold degenerate (dk52).

For billiard systems the scaling parameter is the abso
value of the wave vector,w[k5upu/\, and the action is
proportional to the length of the orbit,SPO5\kl PO . The
periodic orbits of the circle billiard are those orbits for whic
the angle between two bounces is a rational multiple of 2p,
i.e., the periodsl PO are obtained from the condition

l PO52mr sing, ~12!

with g[pmf /mr , mf51,2, . . . thenumber of turns of the
orbit around the origin, andmr52mf,2mf11, . . . thenum-
ber of reflections at the boundary of the circle. Periodic
bits with mrÞ2mf can be traversed in two directions an
thus have multiplicity 2. As mentioned before the calculati
of the zeroth order amplitudesA PO

(0) in Eq. ~3! depends on
whether the classical dynamics is regular or chaotic. For
circle billiard with regular dynamics we start from the Berr
Tabor formula@3# and obtain

A PO
~0! 5Ap

2

l PO
3/2

mr
2

e2 i [ ~p/2!mPO1p/4], ~13!

wheremPO53mr is the Maslov index.@Note that the factor
w2n in Eq. ~3! must be replaced byw2(n21/2) for the regular
circle billiard.# For the calculation of the first order period
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orbit contributiong1(w) in Eq. ~3! we adopt the method o
Alonso and Gaspard@9# and obtain the first order periodi
orbit amplitudes

A PO
~1! 5Apmr

522 sin2 g

6Asin3 g
e2 i [ ~p/2!mPO2p/4]. ~14!

We plan to give a detailed derivation of Eq.~14! elsewhere
@18#. With the periodic orbit amplitudes, Eqs.~13! and~14!,
at hand we have all the ingredients necessary for the
monic inversion of the zeroth and first order periodic or
signal. For the technical details of the harmonic invers
technique see Refs.@14,15,17#. We considered periodic or
bits up to maximum lengthl max5200, which was sufficient
to resolve the low lying states, despite a few near degen
cies. The zeroth order semiclassical approximationsk(0) to
the eigenvalues are obtained by harmonic inversion of
signal C0(s) @Eq. ~4!#, and are presented in Table I. The
agree~despite the near degenerate states atk'11.05 marked
by asterisks! within the numerical accuracy with the resul
of the torus quantization, Eq.~11! ~see eigenvalueskEBK in
Table I!. However, the semiclassical eigenvalues deviate
nificantly, especially for states with low radial quantum nu
bersn, from the exact quantum mechanical eigenvalueskex

in Table I.
The first order corrections to the semiclassical eigenv

uesk(0) are obtained by harmonic inversion of the period
orbit signalC1(s) @Eq. ~10!#. The resulting spectrum, i.e., th

TABLE I. The 20 lowest eigenstates of the circle billiard wi
radiusR51. n,m: Radial and angular momentum quantum nu
bers;kEBK: Results from EBK quantization;k(0): Eigenvalues ob-
tained by harmonic inversion of the periodic orbit signal without\
corrections~nearly degenerate states marked by asterisks are
fully resolved!; k(1): Eigenvalues obtained by harmonic inversio
of the periodic orbit signal including\ correction;kex: Exact eigen-
values, i.e., zeros of the Bessel functionsJm(kR)50.

n m kEBK k(0) k(1) kex

0 0 2.356194 2.356187 2.409239 2.40482
0 1 3.794440 3.794430 3.834226 3.83170
0 2 5.100386 5.100379 5.138108 5.13562
1 0 5.497787 5.497782 5.520501 5.52007
0 3 6.345186 6.345180 6.382687 6.38016
1 1 6.997002 6.996999 7.015857 7.01558
0 4 7.553060 7.553053 7.590944 7.58834
1 2 8.400144 8.400140 8.417477 8.41724
2 0 8.639380 8.639370 8.653839 8.65372
0 5 8.735670 8.735652 8.774088 8.77148
1 3 9.744628 9.744619 9.761243 9.76102
0 6 9.899671 9.899663 9.938844 9.93611
2 1 10.160928 10.160925 10.173526 10.1734
1 4 11.048664 11.048966* 11.077169* 11.064709
0 7 11.049268 11.048966* 11.077169* 11.086370
2 2 11.608251 11.608248 11.619883 11.6198
3 0 11.780972 11.780968 11.791546 11.7915
0 8 12.187316 12.187318 12.228099 12.2250
1 5 12.322723 12.322717 12.338791 12.3386
2 3 13.004166 13.004163 13.015235 13.0152
r-
t
n

a-

e

-
-

l-

integrated differences of the density of states*D%(k)dk, are
shown in Fig. 1. The squares mark the spectrum forD%(k)
5%(1)(k)2% (0)(k) obtained from the harmonic inversion o
the signalC1(s). For comparison the crosses present
same spectrum but for the differenceD%(k)5%ex(k)
2%EBK(k) between the exact quantum mechanical and
EBK spectrum. The deviations between the peak heights
hibit the contributions of terms of the\ expansion series
beyond the first order approximation.

The peak heights of the levels in Fig. 1~dashed lines and
squares! are, up to a multiplicity factor for the degenera
states, the shiftsDk between the zeroth and first order sem
classical approximations to the eigenvaluesk. The first order
eigenvaluesk(1)5k(0)1Dk are presented in Table I, and a
in excellent agreement with the exact eigenvalueskex. An
appropriate measure for the accuracy of semiclassical ei
values is the deviation from the exact quantum eigenval
in units of the average level spacings,^Dk&av51/%̄(k). Fig-
ure 2 presents the semiclassical error in units of the ave
level spacingŝ Dk&av'4/k for the zeroth order~diamonds!
and first order~crosses! approximations to the eigenvalue
States are labeled by the radial and angular momentum q
tum numbers (n,m). In the zeroth order approximation th
semiclassical error for the low lying states is about 3–10%
the mean level spacing. This error is reduced in the first or

-

ot

FIG. 1. Integrated difference of the density of state
*D%(k)dk, for the circle billiard with radiusR51. Crosses:
D%(k)5%ex(k)2%EBK(k). Squares:D%(k)5% (1)(k)2% (0)(k) ob-
tained from the\ expansion of the periodic orbit signal.

FIG. 2. Semiclassical erroruk(0)2kexu ~diamonds! and uk(1)

2kexu ~crosses! in units of the average level spacing^Dk&av'4/k.
States are labeled by quantum numbers (n,m).
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approximation by at least one order of magnitude for
least semiclassical states with radial quantum numbern50.
The accuracy of states withn>1 is improved by two or
more orders of magnitude.

As mentioned above the general technique develope
this paper is not restricted to the circle billiard but can
general be applied to the whole variety of systems which
be quantized semiclassically by harmonic inversion of
periodic orbit sum. While for the circle billiard the period
orbit parameters can be calculated analytically the or
must be obtained from a numerical periodic orbit search
general. However, no additional periodic orbits need to
searched for the\ expansion of the periodic orbit sum, i.e.,
is sufficient to calculate the amplitudes in Eq.~3! for the
given set of orbits as described in Refs.@8–10#.
cs
e

in

n
e

ts
n
e

In conclusion, we have demonstrated that semiclass
spectra beyond the Gutzwiller and Berry-Tabor approxim
tion can be obtained by harmonic inversion of the\ expan-
sion of the periodic orbit signal. For the circle billiard, as
first example, the semiclassical error is reduced by at le
one to several orders of magnitude by just including the lo
est order periodic orbit correction terms. The method p
posed in this paper opens the way to the calculation of h
precision semiclassical eigenvalues directly from perio
orbit data for both regular and chaotic systems. It is n
restricted to bound systems but can be applied to open
tems as well.
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