PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998

h expansion for the periodic orbit quantization by harmonic inversion
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Semiclassical spectra beyond the Gutzwiller and Berry-Tabor approximation for chaotic and regular sys-
tems, respectively, are obtained by harmonic inversion offittexpansion of the periodic orbit signal. The
method is illustrated for the circle billiard, where the semiclassical error is reduced by one to several orders of
magnitude with respect to the lowest order approximation used previg&d963-651X98)13410-4

PACS numbdss): 05.45:+b, 03.65.Sq

Semiclassical spectra can be obtained for both regular and As previously[16] we consider systems with a scaling
chaotic systems in terms of the periodic orbits of the systemproperty, i.e., where the shape of periodic orl§f©) does
For chaotic dynamics the semiclassical trace formula wagot depend on the scaling parameteand the classical ac-
derived by Gutzwille[1,2], and for integrable systems the tion Sp scales as
Berry-Tabor formula[3] is well known to be precisely
equivalent to the Einstein-Brillouin-KelleEBK) torus

guantization[4]. However, the semiclassical trace formulas-rhe scaling parameter plays the role of an inverse effective
are exact only in exceptional cases, e.g., the geodesic mOtiqﬂlanck constant, i.ewzh;ﬁl, and the# expansion of the

on the constant negative curvature surface. In general theyaiodic orbit sum can therefore be written as a power series
are just the leading order terms of an infinite series in powerg, \v—1 The semiclassical spectrum is given by

of the Planck constant and the accuracy of semiclassical
quantization is still an object of intense investigat|@a-7].
Methods for the calculation of the higher order periodic orbit e(w)=— —im g(w), )
contributions were developed j8—10. However, thei ex-
pansion of the periodic orbit sum does not solve the generakith
problem of the construction of the analytic continuation of .
the trace formula. The semiclassical trace formula usually _ _ 1 1) isow
does not converge in the physically interesting region even g(W)—nZO gn(W)—nZO W PZO Apbeseo ()
when only the leading order terms inhare considered, and
special techniques are necessary to overcome the convehe fluctuating part of the semiclassical response function.
gence problem$11-13. Up to now the#A expansion for TheAf;“c)J are the complex amplitudes of timh order peri-
periodic orbit quantization is restricted to systems withodic orbit contributions including phase information from the
known symbolic dynamics, like the three disk scatteringMaslov indices. Usually the zeroth order contributioA$)
problem, where cycle expansion techniques can be appliegke considered only. The Fourier transform of the principal
[9,10]. periodic orbit sum

Recently theharmonic inversiontechnique[14,15 was
proposed as a universal method for periodic orbit quantiza- N W 0)
tion [16,17, which allows the analytic continuation of the ~ Co(S)= ZJ% go(w)e dW—;) Apod(s—Spo)
non-convergent periodic orbit sum to the region where the (4)
semiclassical eigenvalues and resonances are located. The
power of this method was demonstrated by its wide applicais adjusted by application of thearmonic inversiontech-
bility to open and bound systems with both regular and chanique [16,17] to the functional form of the exact quantum
otic classical dynamics. However, the method was restricteéxpression
to the conventional lowest ordér approximation of the pe- L g
riodic orbit sum, i.e., it cannot be applied straightforwardly te k " . i
to theh expansion of the periodic orbit sum. In this paper we ©()= EJW Ek: W—wtieo Mdw=—i Ek: de™ "M,
overcome these problems and extend the method of periodic (5)
orbit quantization by harmonic inversion to the analysis of
the 2 expansion of the periodic orbit sum. When applied towith {w,,d,} the eigenvalues and multiplicities. The fre-
the circle billiard, as a first example, the accuracy of semi-quencieswy o obtained by harmonic inversion of E() are
classical eigenvalues is improved by at least one to severdhe zeroth ordefi approximation to the semiclassical eigen-
orders of magnitude. The method can be applied to a largealues. We will now demonstrate how the higher order cor-
variety of systems, i.e., it is not restricted to problems whichrection terms to the semiclassical eigenvalues can be ex-
can be solved with cycle expansion techniques. tracted from the periodic orbit su®). We first remark that

Spo=WSpo- ()

o
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the asymptotic expansiof8) of the semiclassical response  The method requires as input the periodic orbits of the
function suffers, fon=1, from the singularities at=0, and  classical system up to a maximum peri¢gtaled action
it is therefore not appropriate to harmonically invert the Fou-s,,,x, determined by the average density of stdt&s,17).
rier transform of Eq(3), although the Fourier transform for- The amplitudes4 (F?g are obtained from Gutzwiller's trace
mally exists. This means that the method of periodic orbitformula [1,2] and the Berry-Tabor formulf3] for chaotic
quantization by harmonic inversion cannot straightforwardlyand regular systems, respectively. For the next order correc-
be extended to thé expansion of the periodic orbit sum. tjgn A(pl()) explicit formulas were derived by Gaspard and
Instead we will calculate the correction terms to the semi-alonso for chaotic systems with smooth potenti@sand in
classical eigenvalues separately, order by order, as describegfs. [9,10] for billiards. With appropriate modifications
in the following. [18] the formulas can be used for regular systems as well.
Let us assume that then¢1)st order approximations e now demonstrate the expansion of the periodic orbit
Wi n-1 to the semiclassical eigenvalues are already obtainegum for the example of the circle billiard. We choose this
and thew, , are to be calculated. The difference between thesystem mainly for the sake of simplicity, since all the peri-
two subsequent approximations to the quantum mechanicgdic orbits and the relevant physical quantities can be ob-

response function reads tained analytically. It will be evident that the procedure
works equally well with more complex systems where peri-
gn(W) =2, d _ di _ odic orbits have to be searched numerically. Furthermore this
kK \W—Wgpt+ie W—w,,_;+ie system has served recently as a showpiece example for solv-
ing the fundamental problem of reducing the number of or-
dAwy bits required for periodic orbit quantizatiqi9]. The exact

T4 (W—wy tie)?’ (6) quantum mechanical eigenvaluBs=7%2k?/2M of the circle

' billiard are given as zeros of Bessel functiakg (kR) =0,
wherem is the angular momentum quantum number &d
the radius of the circle. In the following we chooRe=1.
The lowest order semiclassical eigenvalues can be obtained
by an EBK torus quantization resulting in the gquantization
7) condition[5]

With Wi 0= (Wi n+ Wi - 1)/2 andAW, n=Wjc ,— Wy 1. In-
tegration of Eq(6) and multiplication byw" yields

—dw"Aw,

Qn(W)=W"f gn(w)dw= >,

K W—wWy,t+ie

. (1D

m| 3

which has the functional form of a quantum mechanical re- kKRy1—(m/kR)*— |m|ar000ﬁ= 7| n+ 1
sponse function but with residues proportional to tith
order correctiondw, , to the semiclassical eigenvalues. The, . —0+1 +

i ) N ; : with m=0,=1,£2,.
semiclassical approximation to E€f) is obtained from the
termg,(w) in the periodic orbit sun{3) by integration and
multiplication byw", i.e.,

.. being the angular momentum quan-
tum number anch=0,1,2 ... theradial quantum number.
States with angular momentum quantum numivet0 are
twofold degenerated,=2).
1 For billiard systems the scaling parameter is the absolute
_)_ value of the wave vectonv=k=|p|/%, and the action is
w proportional to the length of the orbi§so=%k/pgo. The

8 periodic orbits of the circle billiard are those orbits for which
the angle between two bounces is a rational multiple of 2
i.e., the periods’pg are obtained from the condition

1 .
gn(W):an gn(w)dw= —iz _-A(pnéelwspo—FO
PO Spo

We can now Fourier transform both Eq§) and (8), and
obtain (h=1)

1 [+e ’ . /po=2m, sinvy, (12
Ca(9)=5— J Ga(W)e™Msdw=i d(wi)"Awy e~
TJ—o K with y=mm,/m,, my=1,2, ... thenumber of turns of the
(9 orbit around the origin, anch, =2m,,2m,+1, ... thenum-
i 1 ber of reflections at the boundary of the circle. Periodic or-
=—i> S_A%(s(s_ Spo). (10)  bits with m;#2m, can be traversed in two directions and
PO thus have multiplicity 2. As mentioned before the calculation

of the zeroth order amplitudea(poc)) in Eqg. (3) depends on

Equationd(9) and(10) are the main result of this paper. They yhether the classical dynamics is regular or chaotic. For the

imply that thef: expansion of the semiclassical eigenvaluesgircie pilliard with regular dynamics we start from the Berry-
can be obtained, order by order, by harmonic inverglin  T5p0r formulal3] and obtain

of the periodic orbit signal in Eq10) to the functional form

of Eg. (9). The frequencies of the periodic orbit sigab) /32
are the semiclassical eigenvalueg. Note that the accuracy AL = — = POe-il(mDuport 4] (13
of the semiclassical eigenvalues does not necessarily in- 2 m?

crease with increasing ordar We indicate this in Eq(9) by

omitting the indexn at the eigenvaluew, . The corrections whereupo=3m;, is the Maslov index[Note that the factor
Awy , to the eigenvalues are obtained from #maplitudes ~ w™ " in Eq. (3) must be replaced by~ ("~ %2) for the regular
di(w)"Awy ,, of the periodic orbit signal. circle billiard.] For the calculation of the first order periodic
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TABLE |. The 20 lowest eigenstates of the circle billiard with 0.12 T T T T T

radiusR=1. n,m: Radial and angular momentum quantum num- %
bers;kEBK: Results from EBK quantizatiork?: Eigenvalues ob- o1r %
tained by harmonic inversion of the periodic orbit signal withbut 0.08 | , . o ; _
corrections(nearly degenerate states marked by asterisks are not x F- R
fully resolved; k¥: Eigenvalues obtained by harmonic inversion £ 006 7
of the periodic orbit signal including correction;k®; Exact eigen- ﬁ' 0.04 Ki )
values, i.e., zeros of the Bessel functiahgkR) =0. ’

0.02 i
R AR

0
0 0 2.356194 2.356187 2.409239 2.404826 ) ! ! : :
0 1 3794440  3.794430 3.834226  3.831706 2 4 6 8 0 124
0 2 5.100386 5.100379 5.138108 5.135622 ) )
1 0 5497787 5.497782 5.520501 5.520078 FIG. 1. Integrate_d dlﬁt_er_ence pf the_ density of states,
0 3 6345186 6.345180 6.382687 6.380162 fAQ(k)dké for thEeBKurcIe billiard with rad(lij)st 1.(0§3rosses:
1 1 6997002  6.996999 7015857  7.015587 ~@(K)=0(K) =0 (k). Squaresao(k) =g (k) ~e" (k) ob-
tained from thei expansion of the periodic orbit signal.

0 4 7.553060 7.553053 7.590944 7.588342
1 2 8.400144 8.400140 8.417477 8.417244
2 0 8639380 8.639370 8.653839 8.653728 integrated differences of the density of stafésp (k)dk, are
0 5 8735670 8.735652 8.774088 8.771484 ghown in Fig. 1. The squares mark the spectrumAfor(k)
1 3 9744628  9.744619 9.761243 9761023 _ )y — o(O(k) obtained from the harmonic inversion of
0 6 9.899671 9.899663 9.938844 9.936110 e signalC,(s). For comparison the crosses present the
2 1 10.160928 10.160925 10.173526 10.173468 same spectrum but for the differencae(k)=0{(k)
1 4 11.048664 11.048966 11.077169 11.064709  _ 5EBK(k) between the exact quantum mechanical and the
0 7 11049268 11.048966 11.077169 11.086370  EBK spectrum. The deviations between the peak heights ex-
2 2 11608251  11.608248 11.619883  11.619841 hibit the contributions of terms of thé expansion series
3 0 11.780972 11.780968 11.791546 11.791534 beyond the first order approximation_
0 8 12187316  12.187318 12.228099  12.225092  The peak heights of the levels in Fig(dashed lines and
1 5 12322723 12322717 12.338791  12.338604 squarey are, up to a multiplicity factor for the degenerate
2 3 13.004166  13.004163 13.015235  13.015201 states, the shiftA k between the zeroth and first order semi-

orbit contributiong,(w) in Eq. (3) we adopt the method of
Alonso and Gasparf®] and obtain the first order periodic

orbit amplitudes

5—2sirf y
AR = Jrm— "
PO r 6 Tsi y

We plan to give a detailed derivation of Ed.4) elsewhere
[18]. With the periodic orbit amplitudes, Eg&l3) and (14),

e i[(72) upo— l4] .

classical approximations to the eigenvalked he first order
eigenvaluek®=k(®+ Ak are presented in Table I, and are
in excellent agreement with the exact eigenvalk&s An
appropriate measure for the accuracy of semiclassical eigen-
values is the deviation from the exact quantum eigenvalues

in units of the average level spacingak),,= 1/ (k). Fig-

ure 2 presents the semiclassical error in units of the average
level spacingg Ak}, ~4/k for the zeroth ordefdiamond$

and first order(crossey approximations to the eigenvalues.
States are labeled by the radial and angular momentum quan-
tum numbers if,m). In the zeroth order approximation the

14

at hand we have all the ingredients necessary for the hasemiclassical error for the low lying states is about 3—10% of
monic inversion of the zeroth and first order periodic orbitthe mean level spacing. This error is reduced in the first order
signal. For the technical details of the harmonic inversion

technique see Ref$14,15,17. We considered periodic or- . . . . .
bits up to maximum length’ .= 200, which was sufficient 01 ¢ o o 3
to resolve the low lying states, despite a few near degenera- o %, ° . 0y 9o
cies. The zeroth order semiclassical approximatikfis to ¢

the eigenvalues are obtained by harmonic inversion of the & 0.01 04 ©5 ©8 3
signal Co(s) [Eq. (4)], and are presented in Table I. They 3 00 o © @
agree(despite the near degenerate statds~at1.05 marked 5 * +

by asteriskp within the numerical accuracy with the results 0.001 k (1.0 13 3
of the torus quantization, Eq11) (see eigenvaluek®¥ in U
Table ). However, the semiclassical eigenvalues deviate sig- @O+ @)
nificantly, especially for states with low radial quantum num- 0.0001 ! . : ! .*
bersn, from the exact quantum mechanical eigenvalk@s 2 4 6 8 10

in Table I.

The first order corrections to the semiclassical eigenval- FiG. 2. Semiclassical errofk®—k®| (diamond$ and |k®
uesk(® are obtained by harmonic inversion of the periodic —k®{ (crossesin units of the average level spaciKigk),~4/k.
orbit signalC;(s) [Eq. (10)]. The resulting spectrum, i.e., the States are labeled by quantum numbergr().
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approximation by at least one order of magnitude for the In conclusion, we have demonstrated that semiclassical
least semiclassical states with radial quantum numbe®.  spectra beyond the Gutzwiller and Berry-Tabor approxima-
The accuracy of states with=1 is improved by two or tion can be obtained by harmonic inversion of the&xpan-
more orders of magnitude. sion of the periodic orbit signal. For the circle billiard, as a
As mentioned above the general technique developed ifirst example, the semiclassical error is reduced by at least
this paper is not restricted to the circle billiard but can in one to several orders of magnitude by just induding the low-
general be applied to the whole variety of systems which cagst order periodic orbit correction terms. The method pro-
be quantized semiclassically by harmonic inversion of th&,gsed in this paper opens the way to the calculation of high
periodic orbit sum. While for the circle billiard the periodic recision semiclassical eigenvalues directly from periodic
orbit parameters can be calculated analytically the Orb'.t%rbit data for both regular and chaotic systems. It is not

must be obtained from a nqmerical perjodic Qrbit search iNegyricted to bound systems but can be applied to open sys-
general. However, no additional periodic orbits need to b%ems as well
searched for thé expansion of the periodic orbit sum, i.e., it ’

is sufficient to calculate the amplitudes in E®) for the This work was supported by the Deutsche Forschungsge-
given set of orbits as described in Rei8-10]. meinschaft(Sonderforschungsbereich No. 237
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